

Enterprise Storage – Storage Efficiency

Leah Schoeb, Vice Chair, SNIA Technical Council

SNIA Emerald[™] Training

SNIA Emerald Power Efficiency Measurement Specification, for use in EPA ENERGY STAR[®]

June 24-27, 2013

Topics

Optimization

- Challenges
- Drivers and Initiatives
- Economics
- Optimization Initiatives to Meet Demands
- Storage Perspective Trends and Dynamics

Increasing Storage Efficiency

- Capacity efficiency
- Solid State Technology

Data Protection and Management

- http://www.snia.org/education/tutorials/2012/spring/data
- Cloud Archive
 - http://www.snia.org/cloud/archive

Challenges in IT

- Capital expenditures for systems
- Space, power, and cooling issues
- Infrastructure expansion
- Data protection expanding on current practices
- Administration

Budgets

- Increases not parallel with demand
- Expected services greater than budget allowance

Unstructured Data – 90% Structured Data - 10%

Data Growth (%) Projections by Industry (Tier 1, 7years average) Airline 23% 23% 85% Banking and Finance 31% do no capacity have no Computer hardware/Computer. 25% show back planning Conglomerates 21% capabilities Dairy 26% Distribution 25% Education 25% 90% 70% Food processing 20% Government have little to no 58% do not use a process Healthcare storage catalog 43% documentation ICT 0% Insurance 28% Media & Entertainment 17% 70% 70% Mining & chemicals 21% Oil & Gas 20% do not use do not have Others storage 19% archive processes virtualization Paper Products 20% Professional services 25% Publishing 22% 68% Retail 40% **Revenue Services** 47% are not using de-Semiconductor Foundry 56% Shipping 13% Telecommunications 23% Source: Transportation · IBM Storage Infrastructure Optimization (SIO) study 26% 3 Utilities 27% 6/23/13 5 SNIA Emerald[™] Training ~ June 24-27, 2013 www.sniaemerald.com SNIA Emerald

IT Challenges

External inputs: "Why aren't you doing this?"

- Cloud implementations
 - > Public clouds buzzwords and confusion
 - > Private cloud data center transformation to IT As A Service
 - > Software As A Service
 - > Big data analytics
- Mobility
 - Continued use expansion of tablets and notebooks
 - > BYOD (A change in the "B")
 - Security concerns for information
 - Administrative efforts where is the line

Top CIO Priorities for 2012

- 1. Consolidation / Optimization
 - Server, Desktop, Storage, Services
- 2. Cloud Services for IT IT as a Service
- 3. Security
- 4. Mobile services / mobility
- 5. Budget and cost control
- 6. Shared services charge back and utility-based services
- 7. Health care insurance issues
- 8. Legacy modernization
- 9. Interoperable networks

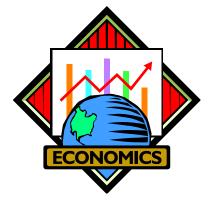
US government NASCIO survey 11/13/12

10-Disaster recovery / Business continuity

SNIA Emerald

SNIA Emerald[™] Training ~ June 24-27, 2013

Drivers in Optimization and Efficiency


Expansion of business / organization

- Greater needs for capacity, availability
- Rapid deployment requirements
- New demands in server virtualization and VDI

Return on investment into IT – compared to alternatives

- Optimize the IT investment
- IT as value not a tax
- Continued advancement...
 - Remain competitive
 - Adapting to changing demands
 - "Technology as a competitive advantage"

Optimization - Economics

Practical Usage

- Costs assessed, profit center, fixe
 - > Facilities
 - > Administrative staff
 - > Equipment
 - > External / contract / consultant
- Use of metrics
 - > Measure for improvement
 - > Comparison against industry defend costs
 - > Requires a discipline to collect and calculate

Optimization – Efficiency

Utilization of resources

- Effectively using what was paid for
- Examples:
 - > Using processor cycles in a server
 - Limitations preventing effective usage
 - Effort to improve
 - > Storage space
 - What is the utilization
 - Limitations inherent architectural considerations
 - Technology changes that have an impact
- Green storage technologies use less raw capacity to store and use the same data set
 - Power consumption falls accordingly

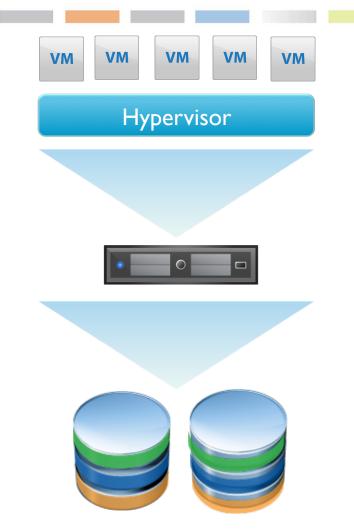
Delivery of services

- Measurement is time: how long
- Examples:
 - > Time for application deployment: software, server, storage, physical space, power, cooling, infrastructure
 - > Time for connectivity: network, userids,
 - Time for storage expansion: how long, movement required, protection
 - > Time for more compute cycles

Storage Perspective – Trends & Dynamics

Virtualization (Server & VDI)

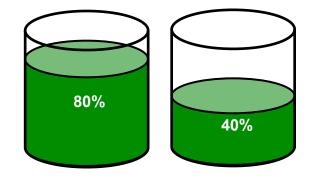
- Reduce number of physical servers
- Greater use of resources
- Security driven


Storage efficiency

- Consolidation
- New features / technologies
 - > Tiering
 - > SSD's
 - > Thin provisioning & reclamation
 - > Data reduction

Future - Software Defined Storage

- Streamline storage consumption
- Monitoring, management, and metering
- Protection framework for highly scalable storage services



Storage Efficiency

Optimized Capacity for a Greener Datacener

SNIA Emerald[™] Training ~ June 24-27, 2013

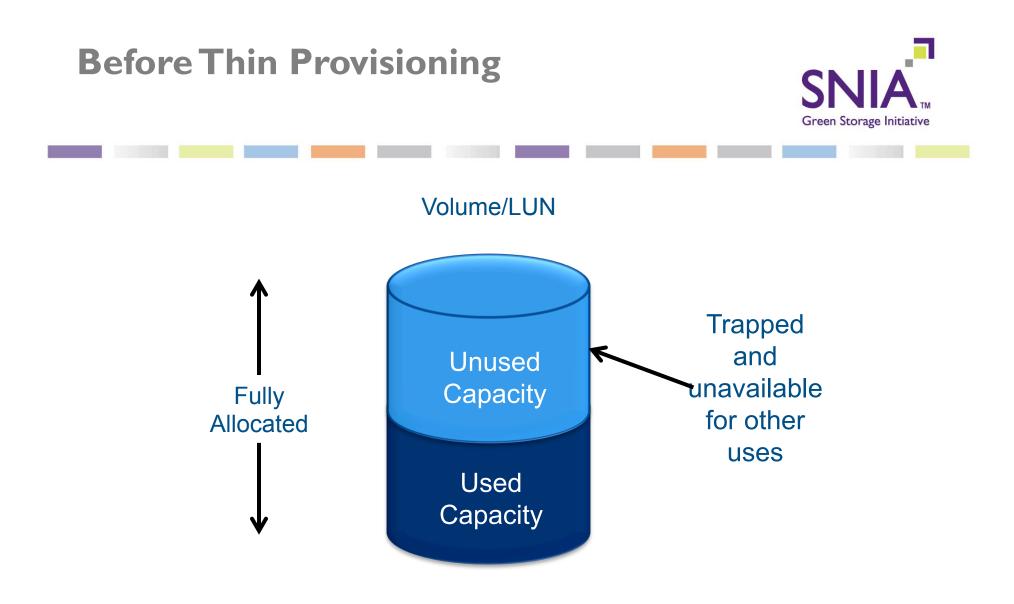
Enterprise Storage Optimizing Features

Thin Provisioning

Use of disk virtualization

Data Reduction

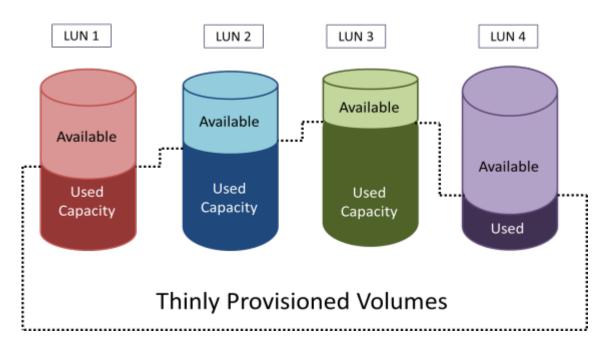
- Deduplication
- Compression
- Using Solid State Storage
- Auto Tiering using solid state storage



Thin Provisioning

SNIA Emerald[™] Training ~ June 24-27, 2013

Traditional Allocation



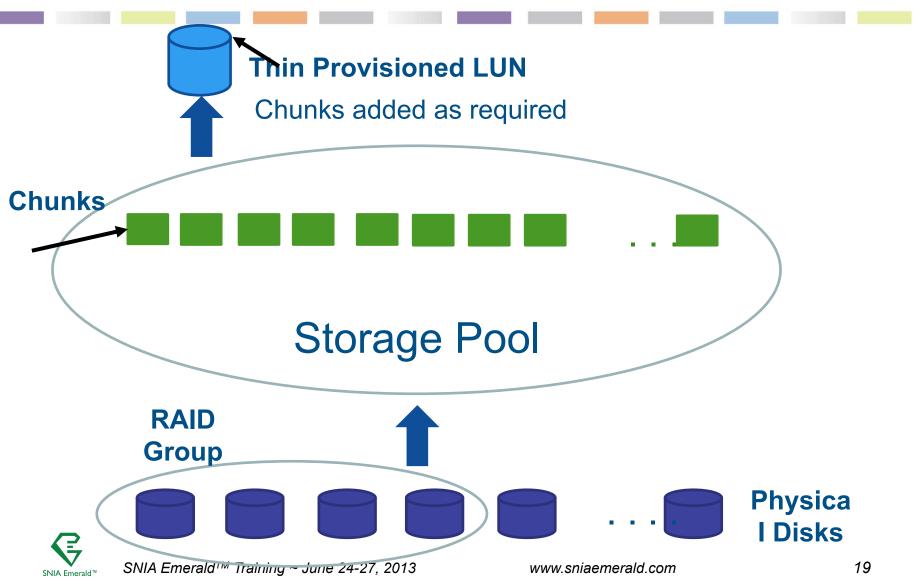
SNIA Emerald[™] Training ~ June 24-27, 2013

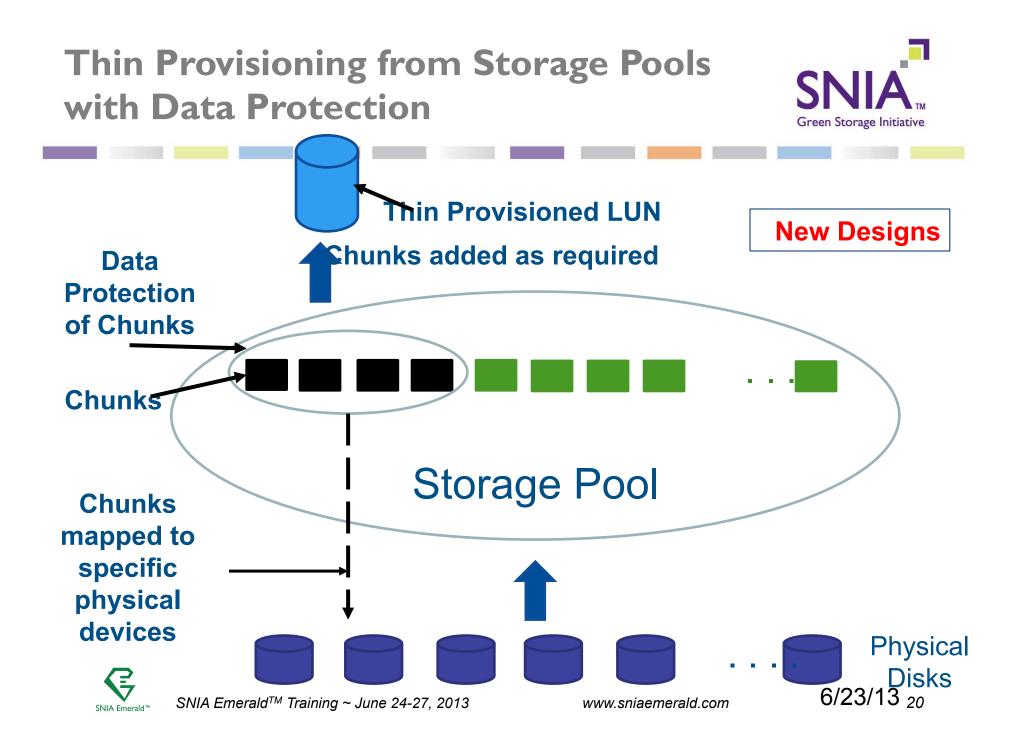
Thin Provisioning

- PG&E adds thin provisioning to their energy-saving incentive program
- More effective use of capacity and space efficiency
- Cuts down or eliminates over provisioning
- Notifications when space consumption reaches thresholds
- Space Reclamation
- Can save up to 75% in energy costs
- Can eliminate up to 70% of legacy capacity

Green Storage Initiative

Disk Virtualization for Thin Provisioning

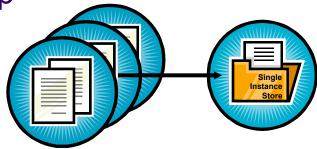



- New storage system architecture to only assign capacity as it was written
- Created storage pools
 - Set of chunks of data size of chunk could be specified at time of configuration
 - Volumes were created without assigning real capacity
 - As data written, chunks were assigned
- For newer architecture, chunks were distributed across physical disks to match data protection choices
 - Different RAID levels
 - Advanced data protection techniques

Thin Provisioning from Storage Pools

Data Reduction Technology

Deduplication and Compression


SNIA Emerald[™] Training ~ June 24-27, 2013

- Top-level definition: storing only a single instance of data
 - At block level: look for redundant blocks
 - At byte offset level (also called bit-level sometimes): look for stream of bytes that are duplicate
 - At a file level: look for duplicate files
- Redundant data is replaced with a pointer (index) to the unique copy
- Streaming (in-band) and offline techniques
- Makes a greener disk-to-disk backup
- Up 90% of data capacity saved
- Different than compression
- Store more data in less space

SNIA Emerald[™] Training ~ June 24-27, 2013

- Involves encoding information using fewer bits that the original representation.
- Lossless Compression reduces bits by identifying and eliminating redundancy.
 - represent data more concisely without losing data
- Lossy Compression reduces bits by identifying unnecessary information and removing it
- Decompression comes at a performance cost which varies
 - Degree of compression
 - Amount of distortion introduced when using lossy compression
 - Computational resources required to compress and uncompress data

Data Reduction Technologies

Reduce amount of data

- Data compression
- Data deduplication
- Backup tapes compression
- Backup to disk typically deduplication
- Backup to cloud compression
- Primary or secondary storage deduplication / compression
- Archive compression

Green Storage technology savings calculation

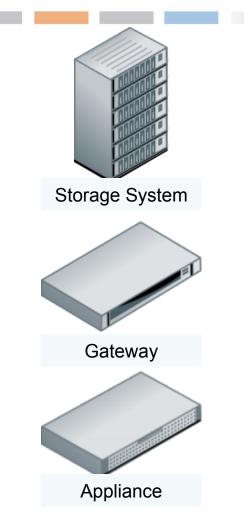
Every TB of disks you don't buy saves you

CAPEX for equipment and footprint

Space Reduction Ratio	Space Reduction Percentage = I – (I / Space Reduction Ratio)
2:1	I/2 = 50%
5:1	4/5 = 80%
10:1	9/10 = 90%
20:1	19/20 = 95%
100:1	99/100 = 99%
500: I	499/500 = 99.8%

3 Major HW Design Approaches for Datacenter

Storage System


 General purpose storage system that can dedup data

Gateway

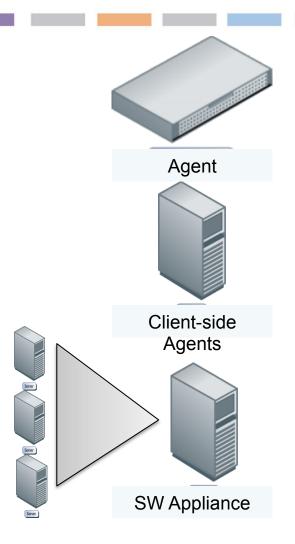
 Hardware capable of dedup data on external storage hardware

Appliance

 Hardware capable of dedup and storing data in an appliance for this specific purpose

3 Major SW Design Approaches

Appliance


 HW for dedup and storing data in an appliance for this specific purpose

Agents

 Client-side SW for a specific application

Software Appliance

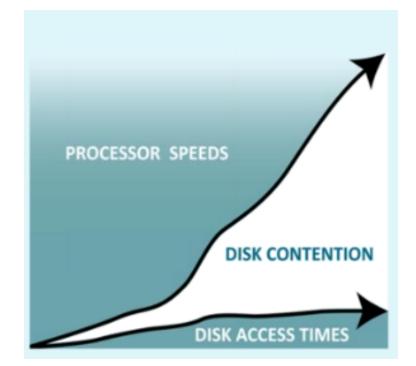
 Host-side SW for storing dedup data from application agents

Benefits – Deduplication and Compression

- Satisfy ROI/TCO requirements
- Manage data growth
- Increase efficiency of storage and backup
- Reduce overall cost of storage
- Reduce network bandwidth
- Reduce operational cost including
 - Infrastructure costs required space, power and cooling
 - Movement toward a greener datacenter carbon footprint friendly
- Reduce administrative costs

- Reduces physical data storage requirements by removing duplicate data
- Allows data to be retained on disk for longer periods, using less physical space
- Involves tradeoffs relating to degree of physical space reduction and performance considerations (some designs are better than others)
- Can be used with primary storage or as part of a backup solution.
- Thoughtful deployment allows users to benefit from a greener datacenter.

Solid State Technology


SNIA Emerald[™] Training ~ June 24-27, 2013

Solid State Device Usage

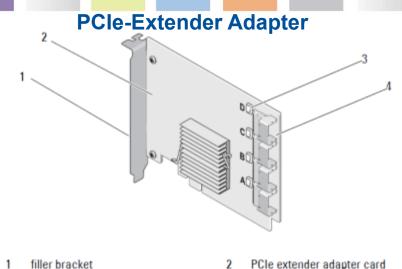
Justifications for SSDs

- Rugged no moving parts
- Performance no rotational latency or actuator movement as with HDDs
- Reliability: MTBF typically 6x over HDD
- Operational costs power requirement is typically 1/4th of HDD

Solid State Technology

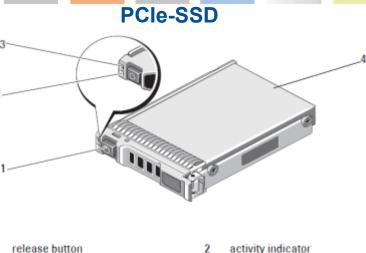
- Performance is primary gain with solid state
- Focus on NAND Flash today
- General Usages
 - SSD: Solid-state device, Solidstate disk or drive
 - Flash memory cards for servers
 - Tiering in storage systems
 - Caching in storage systems
 - All solid state storage systems
 - Consumer

PCIe Flash Cards



NAND Flash Drives

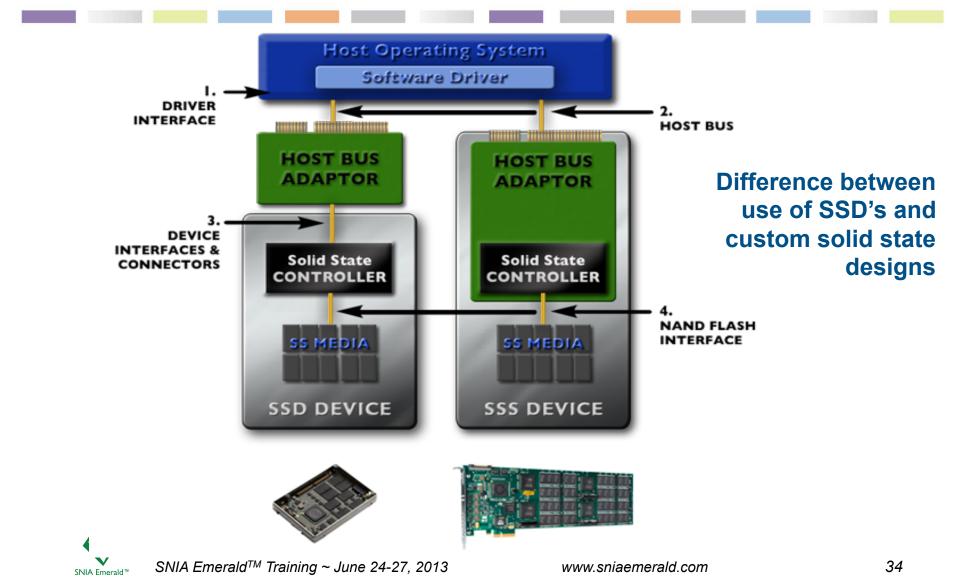
Solid State Technology



- filler bracket 1
- port link status LED(4) 3

- PCIe extender adapter card
- adapter cable connectors (4) 4

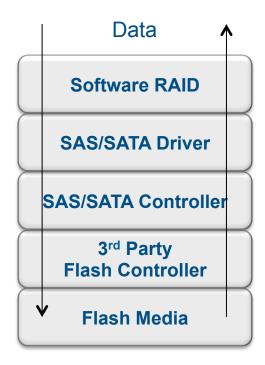
1 3 status indicator


- 2 activity indicator
- PCIe SSD device 4

www.sniaemeraiu.com

Solid State Technology Host Side Storage

Solid State Technology Storage Arrays


Solid state in existing design storage system

- SSDs as a storage tier
 - > System manages data and accelerates operations
 - Embedded software to migrate data based on access patterns
- SSDs as cache tier
 - > Highly active data keep in SSDs
 - > May be separate read and write
 - > Value over DRAM is cost non-volatility simplicity
- All-SSD array (existing design with only SSDs)
 - Fundamental architecture still based on spinning disks
 - > Configuration difference only
- Storage system use of internal Flash cards

Typically as cache

Solid State Technology Storage – New All Flash Arrays

New storage system architectures for all solid state

- Internal design to handle memory speed
- Manage technology characteristics writes, cell sparing
 - > Done with custom Flash controllers
- Different types SSD, Flash card, next generation
- Key characteristics to look for:
 - > Data reduction reduces number of writes required
 - > Snapshot as a mapped technology
 - > Remote replication
 - > Self-healing techniques
 - > Lifespan
 - > Scale-out capability usually clustering

- SSDs do not require special cooling and can tolerate higher temperatures than HDDs.
- Resistant to shock and vibration
- Small and light weight leads to higher capacity density
- Trend data reduction with SSDs
 - Compression & deduplication to *multiply capacity and reduce number of writes required*
 - New techniques will drive towards price parity with HDDs

Factors to Consider in SSS

Unique Performance behavior

- No moving parts (no rotational latency or seek times)
- Access time in the microseconds

Wear Leveling Algorithms

• Not all algorithms are created equal

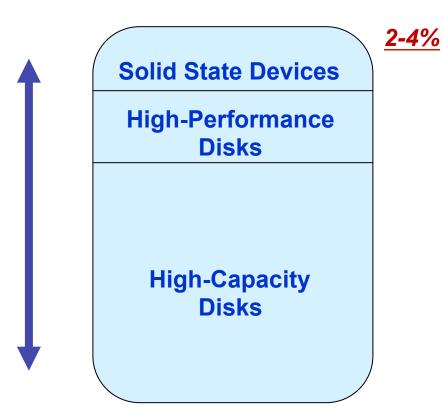
Misalignment

- Performance degradations as high as 30% in some cases
- Shortened SSS lifespan

SLC vs. MLC Flash

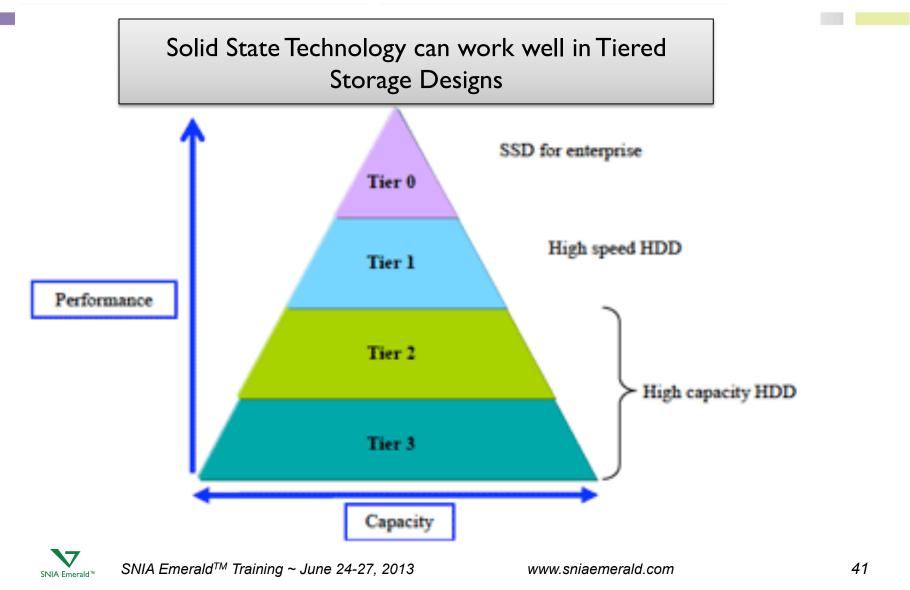
- Single-Level Cell Flash stores one unit of information in a single cell.
- Multi-Level Cell Flash stores multiple units of information in a single cell.
- SLC access times are faster than MLC
- MLC is less expensive
- TLC is coming on the market Good for archive solutions

Tiered Storage



SNIA Emerald[™] Training ~ June 24-27, 2013

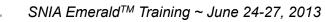
- In-the-box tiering
 - Major performance boost
 - Limit economic impact of costs of higher performance drives
 - Utilizes resources better
 - Economic advantage

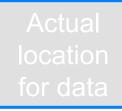


Data Movement

Tiered Storage & Auto Tiering

Tiering vs. Caching




Storage tiers

- Persistence
- Implies a particular price and performance metric
- Provides actual capacity
- All content resides on media
- Performance is limited only to media speed
- May be improved with caching
- Major gain: storage consolidation

Caching

- Not considered actual storage
- Not persistent
- All capacity must be backed by non-volatile media
- Performance limited to size of cache
- Limited use for random workloads

Gains from Optimization and Efficiency

Greater storage efficiency - \$

- Space, power/cooling, utilization
- Direct economic gains

Consolidation

- Lower datacenter footprint
- Higher density
- More effective use of current storage

Provable optimization savings

- Results TCO and ROI
- Initiatives show improvements in incremental steps

Thank You

Leah Schoeb <u>leah@evaluatorgroup.com</u> Twitter:@vLeahSchoeb

SNIA Emerald[™] Training ~ June 24-27, 2013